organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,7-Bis(benzyloxy)-2-phenyl-4Hchromen-4-one

Angannan Nallasivam,^a Munirathinam Nethaji,^b Nagarajan Vembu,^c* Buckle Jaswant^d and Nagarajan **Sulochana**^a

^aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, ^bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India, ^cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and ^dDepartment of Chemistry, Government Arts College, Karur 639 005, India Correspondence e-mail: vembu57@yahoo.com

Received 6 November 2008; accepted 23 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.059; wR factor = 0.155; data-to-parameter ratio = 17.8.

In the title compound, $C_{29}H_{22}O_4$, the chromene ring is almost planar with a small puckering [0.143 (2) Å]. The crystal structure is stabilized by C-H···O and C-H··· π interactions. Edge-to-face (centroid-centroid distances of 3.894 and 3.673 Å) and face-to-face (centroid-centroid distance of 3.460 Å) π - π -ring electron interactions are also observed.

Related literature

For the biological and pharmacological properties of benzopyrans and their derivatives, see: Brooks (1998); Hatakeyama et al. (1988); Hyana & Saimoto (1987); Tang et al. (2007). For the importance of 4H-chromenes, see Liu et al. (2007); Wang, Fang et al. (2003); Wang, Zhang et al. (2003). For hydrogenbond motifs, see: Bernstein et al. (1995); Desiraju (1989); Desiraju & Steiner (1999); Etter (1990).

Experimental

Crystal data C29H22O4 $M_r = 434.47$

Triclinic, $P\overline{1}$ a = 9.496 (3) Å

b = 11.572 (3) A	Z = 2
c = 11.767 (3) Å	Mo $K\alpha$ radiation
$\alpha = 66.564 \ (4)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 79.668 \ (5)^{\circ}$	T = 293 (2) K
$\gamma = 73.836 \ (5)^{\circ}$	$0.45 \times 0.33 \times 0.23 \text{ mm}$
$V = 1136.1 (5) \text{ Å}^3$	
Data collection	

Bruker SMART APEX CCD

Bruker SMART APEX CCD	13435 measured reflections
diffractometer	5302 independent reflections
Absorption correction: multi-scan	3534 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1998)	$R_{\rm int} = 0.018$
$T_{\min} = 0.963, \ T_{\max} = 0.981$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ 298 parameters $wR(F^2) = 0.155$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^-$ S = 1.05 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 5302 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
016 1116 017	0.02	2.57	2 212 (2)	107
$C10 - H10 \cdots O1/r$	0.93	2.57	3.212 (3)	127
$C30-H30\cdots Cg1^{ii}$	0.93	3.12	3.838	135
$C8-H8\cdots Cg2^{iii}$	0.93	3.29	4.066	142
$C27 - H27B \cdots Cg2^{iii}$	0.97	3.18	4.083	156

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x, y, z + 1; (iii) -x + 2, -y + 2, -z + 1. Cg1 and Cg2 are the centroids of the C20-C25 and C28-C33 rings, respectively.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

AN thanks Dr Naresh Kumar and Dr G. Vengatachalam, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd Bangalore, India, for providing laboratory facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2125).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125-167. Amsterdam: Elsevier.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11-40. New York: Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202-1204.
- Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
- Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63. 090-091.

Sheldrick, G. M. (1998). SADABS. University of Gottingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
- Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). *Acta Cryst.* E**59**, 01517–01518.
- Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E**59**, 01244–01245.

Acta Cryst. (2008). E64, o2490-o2491 [doi:10.1107/S160053680803938X]

5,7-Bis(benzyloxy)-2-phenyl-4H-chromen-4-one

A. Nallasivam, M. Nethaji, N. Vembu, B. Jaswant and N. Sulochana

Comment

Chromenes (benzopyrans) and their derivatives have numerous biological and pharmacological properties (Tang *et al.*, 2007) such as antisterility (Brooks, 1998) and anticancer activity (Hyana & Saimoto, 1987). In addition, polyfunctionalized chromene units are present in numerous natural products (Hatakeyama *et al.*, 1988). 4*H*-chromenes are important synthons for some natural products (Liu *et al.*, 2007). As a part of our structural investigations on 4*H*-chromene derivatives and compounds containing the benzopyran fragment, the single-crystal X-ray diffraction study on the title compound was carried out.

The chromene ring is almost planar similarly as those found in the related chromene derivatives (Wang, Zhang *et al.*, 2003; Wang, Fang *et al.*, 2003). The total puckering amplitude of the chromene ring is 0.143 (2) Å in the title structure. The interplanar angle between the chromene ring and the 2-phenyl ring is 6.8 (2)° thereby indicating the almost coplanar arrangement (Fig. 1). The benzyl group at C5 is slightly distorted from coplanarity with the chromene ring whereas the benzyl group at C7 is clearly non-coplanar as discerned from the respective interplanar angles of 7.6 (1)° and 70.01 (7)°.

The crystal structure is stabilized by the interplay of C–H···O and C–H··· π interactions (Fig. 2, Table 1; Desiraju, 1989; Desiraju & Steiner, 1999). The C12–H12···O1 interaction is involved in a motif of a graph set S(5) (Bernstein *et al.*, 1995; Etter, 1990). In another S(5) motif, C21–H21···O18 interaction is involved. The C8–H8···*Cg*2ⁱⁱ and C27–H27···*Cg*2ⁱⁱ (*Cg*2 is the centroid of the ring C28\C29···C33) interactions take part in the motif of the graph set $R^{1}_{2}(7)$ where the entire *Cg*2 ring C28\C29···C33 is considered as a single acceptor atom.

There are two edge-to-face π ··· π interactions between Cg3 (O1\C2\C3\C4\C9\C10) and Cg4 (C5\C6\C7\C8\C9\C10) [2-*x*, 2-*y*, -*z*] at 3.894 Å with $\alpha = 4.44$, $\beta = 26.68$, $\gamma = 31.06^{\circ}$ and perpendicular distances being 3.336 and 3.480 Å, Cg4 and Cg1 (C20\C21\C22\C23\C24\C25) [1-*x*, 2-*y*, -*z*] at 3.673 Å with $\alpha = 6.87$, $\beta = 20.69$, $\gamma = 16.31^{\circ}$ and perpendicular distances being 3.525 and 3.436 Å. There is a face to face π ··· π interaction between two symmetery related Cg4 (2-*x*, 2-*y*, -*z*) rings at 3.460 Å with $\alpha = 0.00$, $\beta = 10.24$, $\gamma = 10.24^{\circ}$ and perpendicular distances being 3.405 Å (α is the dihedral angle between the planes I and J where I is the plane of centroid 1 and J is the plane of centroid 2, β is the angle between the vector Cg(I) \rightarrow Cg(J) and the normal to plane I, γ is the angle between the vector Cg(I) \rightarrow Cg(J) and the normal to plane J, the two perpendicular distances of Cg(I) on ring J and Cg(J) on ring I).

Experimental

A suspension of chrysin (3.93 mmol, 1.00 g) and potassium carbonate (11.81 mmol, 1.64 g) in dimethyl formamide (10 ml) were added into a round bottom flask. The reaction mixture was heated to 383 K for 2–3 h. The reaction mixture was then cooled to 353 K and benzyl chloride (15.74 mmol, 1.99 g) was slowly added to the reaction mixture with the help of a dropping funnel. The reaction mixture was maintained for 8–9 h at 353 K and monitored by a high pressure liquid chromatography (HPLC). After completion of the reaction, the content was quenched with water and stirred for 30–45 min at 303 K. The obtained crude solid was filtered and washed with plenty of water followed by methanol and dried under

vacuum at 343 K. The crude product was dissolved in 20 ml of 1:1 (volume) mixture of dichloromethane and n-hexane. The clear solution was kept for a week without stirring. Diffraction quality prism shaped crystals of average size 0.3 mm were obtained which were filtered and washed with n-hexane and dried under vacuum at 343 K. Yield: 90%

Refinement

All the H-atoms were observed in the difference electron density map. However, they were situated into idealized positions with C-H = 0.93 and 0.97 Å for aryl and methylene H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H)=1.2Ueq(C)$.

Figures

Fig. 1. The title molecule showing the displacement ellipsoids depicted at the 50% probability level for all non-H atoms. The hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. The molecular packing viewed down the *a*-axis. Dashed lines represent weak C–H…O interactions.

5,7-Bis(benzyloxy)-2-phenyl-4H-chromen-4-one

Crystal data	
$C_{29}H_{22}O_4$	<i>Z</i> = 2
$M_r = 434.47$	$F_{000} = 456$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.270 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point = 439–441 K
a = 9.496 (3) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 11.572 (3) Å	Cell parameters from 589 reflections
c = 11.767 (3) Å	$\theta = 2.5 - 27.5^{\circ}$
$\alpha = 66.564 \ (4)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 79.668 \ (5)^{\circ}$	T = 293 (2) K
$\gamma = 73.836 \ (5)^{\circ}$	Prism, colourless

$V = 1136.1 (5) \text{ Å}^3$

```
0.45\times0.33\times0.23~mm
```

Data collection

Bruker SMART APEX CCD diffractometer	5302 independent reflections
Radiation source: fine-focus sealed tube	3534 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.018$
Detector resolution: 0.3 pixels mm ⁻¹	$\theta_{\text{max}} = 28.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.9^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)	$k = -15 \rightarrow 15$
$T_{\min} = 0.963, T_{\max} = 0.981$	$l = -15 \rightarrow 15$
13435 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.155$	$w = 1/[\sigma^2(F_o^2) + (0.0655P)^2 + 0.1818P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
5302 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
298 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
88 constraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	1.10569 (12)	0.71663 (11)	0.18466 (11)	0.0536 (3)
C2	1.13210 (18)	0.63546 (16)	0.12145 (16)	0.0511 (4)
C3	1.0413 (2)	0.65365 (18)	0.03827 (18)	0.0619 (5)

H3	1.0625	0.5959	-0.0026	0.074*
C4	0.91202 (19)	0.75798 (18)	0.00843 (17)	0.0585 (5)
C5	0.78763 (16)	0.96910 (16)	0.04245 (15)	0.0487 (4)
C6	0.77971 (17)	1.05076 (16)	0.10297 (15)	0.0502 (4)
H6	0.7084	1.1279	0.0852	0.060*
C7	0.87887 (17)	1.01797 (16)	0.19122 (15)	0.0483 (4)
C8	0.98609 (17)	0.90462 (16)	0.21876 (15)	0.0503 (4)
H8	1.0521	0.8825	0.2777	0.060*
C9	0.89526 (17)	0.85064 (16)	0.06822 (15)	0.0482 (4)
C10	0.99182 (16)	0.82506 (15)	0.15545 (15)	0.0469 (4)
C11	1.26652 (19)	0.53363 (16)	0.15672 (17)	0.0547 (4)
C12	1.3574 (2)	0.53208 (19)	0.23695 (19)	0.0690 (5)
H12	1.3321	0.5957	0.2711	0.083*
C13	1.4850 (3)	0.4377 (2)	0.2670 (2)	0.0883 (7)
H13	1.5451	0.4385	0.3209	0.106*
C14	1.5238 (3)	0.3431 (2)	0.2185 (3)	0.0958 (8)
H14	1.6105	0.2799	0.2381	0.115*
C15	1.4336 (3)	0.3424 (2)	0.1410 (3)	0.1085 (10)
H15	1.4585	0.2773	0.1087	0.130*
C16	1.3067 (2)	0.4365 (2)	0.1098 (2)	0.0867 (7)
H16	1.2470	0.4346	0.0562	0.104*
017	0.82679 (16)	0.76574 (15)	-0.06285 (15)	0.0858 (5)
O18	0.69794 (12)	0.99537 (12)	-0.04619 (11)	0.0609 (3)
C19	0.59954 (19)	1.11810 (18)	-0.08836 (17)	0.0587 (5)
H19A	0.6522	1.1861	-0.1123	0.070*
H19B	0.5245	1.1272	-0.0227	0.070*
C20	0.52982 (18)	1.12834 (19)	-0.19821 (16)	0.0588 (5)
C21	0.5695 (2)	1.0332 (2)	-0.24758 (18)	0.0691 (5)
H21	0.6430	0.9601	-0.2137	0.083*
C22	0.5008 (3)	1.0456 (3)	-0.3475 (2)	0.0871 (7)
H22	0.5285	0.9806	-0.3801	0.105*
C23	0.3932 (3)	1.1517 (3)	-0.3984 (2)	0.0995 (8)
H23	0.3478	1.1597	-0.4657	0.119*
C24	0.3522 (3)	1.2469 (3)	-0.3498 (2)	0.0956 (8)
H24	0.2784	1.3196	-0.3843	0.115*
C25	0.4196 (2)	1.2359 (2)	-0.2496 (2)	0.0767 (6)
H25	0.3907	1.3009	-0.2170	0.092*
O26	0.86159 (12)	1.10706 (11)	0.24369 (11)	0.0595 (3)
C27	0.9671 (2)	1.08276 (19)	0.32789 (18)	0.0655 (5)
H27A	1.0648	1.0779	0.2855	0.079*
H27B	0.9663	1.0009	0.3963	0.079*
C28	0.9288 (2)	1.19031 (17)	0.37608 (16)	0.0578 (5)
C29	0.8056 (2)	1.2047 (2)	0.45477 (18)	0.0678 (5)
H29	0.7427	1.1492	0.4750	0.081*
C30	0.7731 (3)	1.2992 (2)	0.5043 (2)	0.0807 (6)
H30	0.6885	1.3082	0.5569	0.097*
C31	0.8657 (4)	1.3795 (2)	0.4758 (2)	0.1003 (9)
H31	0.8448	1.4434	0.5095	0.120*
C32	0.9893 (4)	1.3666 (3)	0.3978 (3)	0.1228 (12)
				· /

Н32	1.0527	1.4214	0.3787	0.147*
C33	1.0199 (3)	1.2724 (3)	0.3475 (2)	0.0965 (8)
H33	1.1034	1.2647	0.2936	0.116*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0515 (6)	0.0537 (7)	0.0603 (7)	0.0017 (5)	-0.0168 (5)	-0.0296 (6)
C2	0.0536 (9)	0.0488 (9)	0.0564 (10)	-0.0114 (7)	-0.0058 (8)	-0.0247 (8)
C3	0.0644 (11)	0.0605 (11)	0.0732 (12)	-0.0072 (9)	-0.0160 (9)	-0.0375 (10)
C4	0.0571 (10)	0.0673 (11)	0.0617 (11)	-0.0133 (9)	-0.0150 (8)	-0.0309 (9)
C5	0.0392 (8)	0.0589 (10)	0.0505 (9)	-0.0107 (7)	-0.0094 (7)	-0.0207 (8)
C6	0.0413 (8)	0.0527 (9)	0.0542 (10)	-0.0030 (7)	-0.0119 (7)	-0.0189 (8)
C7	0.0452 (8)	0.0530 (9)	0.0508 (9)	-0.0063 (7)	-0.0084 (7)	-0.0246 (8)
C8	0.0461 (9)	0.0573 (10)	0.0523 (9)	-0.0024 (7)	-0.0154 (7)	-0.0265 (8)
C9	0.0433 (8)	0.0562 (10)	0.0500 (9)	-0.0111 (7)	-0.0063 (7)	-0.0236 (8)
C10	0.0417 (8)	0.0505 (9)	0.0489 (9)	-0.0060(7)	-0.0066 (7)	-0.0203 (7)
C11	0.0560 (10)	0.0471 (9)	0.0635 (11)	-0.0069 (8)	-0.0085 (8)	-0.0246 (8)
C12	0.0745 (12)	0.0592 (11)	0.0775 (13)	0.0086 (9)	-0.0264 (10)	-0.0371 (10)
C13	0.0869 (15)	0.0769 (14)	0.1058 (18)	0.0158 (12)	-0.0460 (14)	-0.0452 (14)
C14	0.0860 (16)	0.0741 (15)	0.129 (2)	0.0242 (12)	-0.0414 (15)	-0.0530 (15)
C15	0.1037 (18)	0.0862 (17)	0.159 (3)	0.0276 (14)	-0.0466 (18)	-0.0866 (18)
C16	0.0804 (14)	0.0795 (15)	0.1213 (19)	0.0102 (12)	-0.0371 (13)	-0.0655 (14)
O17	0.0821 (10)	0.0934 (11)	0.1075 (11)	0.0004 (8)	-0.0444 (9)	-0.0614 (9)
O18	0.0536 (7)	0.0666 (8)	0.0682 (8)	-0.0024 (6)	-0.0269 (6)	-0.0290 (6)
C19	0.0521 (10)	0.0597 (11)	0.0642 (11)	-0.0109 (8)	-0.0187 (8)	-0.0178 (9)
C20	0.0453 (9)	0.0740 (12)	0.0528 (10)	-0.0185 (9)	-0.0099 (8)	-0.0130 (9)
C21	0.0544 (11)	0.0946 (15)	0.0583 (11)	-0.0131 (10)	-0.0102 (9)	-0.0284 (11)
C22	0.0783 (14)	0.127 (2)	0.0646 (13)	-0.0213 (14)	-0.0128 (11)	-0.0418 (14)
C23	0.0856 (17)	0.147 (3)	0.0628 (14)	-0.0260 (17)	-0.0273 (12)	-0.0263 (16)
C24	0.0728 (15)	0.108 (2)	0.0810 (16)	-0.0075 (13)	-0.0355 (12)	-0.0054 (15)
C25	0.0621 (12)	0.0810 (14)	0.0764 (14)	-0.0089 (10)	-0.0246 (10)	-0.0151 (11)
O26	0.0566 (7)	0.0597 (7)	0.0690 (8)	0.0068 (6)	-0.0251 (6)	-0.0357 (6)
C27	0.0673 (11)	0.0692 (12)	0.0670 (12)	0.0059 (9)	-0.0303 (9)	-0.0360 (10)
C28	0.0663 (11)	0.0582 (11)	0.0517 (10)	-0.0029 (9)	-0.0181 (9)	-0.0249 (9)
C29	0.0647 (12)	0.0765 (13)	0.0680 (12)	-0.0101 (10)	-0.0132 (10)	-0.0333 (11)
C30	0.0873 (15)	0.0879 (16)	0.0690 (14)	0.0021 (13)	-0.0108 (11)	-0.0439 (12)
C31	0.167 (3)	0.0714 (15)	0.0735 (16)	-0.0217 (17)	-0.0086 (17)	-0.0416 (13)
C32	0.192 (3)	0.120 (2)	0.098 (2)	-0.093 (2)	0.033 (2)	-0.0632 (19)
C33	0.119 (2)	0.116 (2)	0.0828 (16)	-0.0573 (17)	0.0248 (14)	-0.0581 (15)

Geometric parameters (Å, °)

O1—C2	1.3623 (19)	C19—C20	1.505 (2)
O1—C10	1.3772 (19)	С19—Н19А	0.9700
C2—C3	1.336 (2)	С19—Н19В	0.9700
C2—C11	1.468 (2)	C20—C21	1.375 (3)
C3—C4	1.442 (2)	C20—C25	1.384 (3)
С3—Н3	0.9300	C21—C22	1.386 (3)

C4—O17	1.2287 (19)	C21—H21	0.9300
C4—C9	1.461 (2)	C22—C23	1.359 (3)
C5—O18	1.3521 (18)	C22—H22	0.9300
C5—C6	1.372 (2)	C23—C24	1.369 (4)
С5—С9	1.420 (2)	С23—Н23	0.9300
C6—C7	1.395 (2)	C24—C25	1.386 (3)
С6—Н6	0.9300	C24—H24	0.9300
C7—O26	1.3590 (19)	C25—H25	0.9300
С7—С8	1.378 (2)	O26—C27	1.4291 (19)
C8—C10	1.382 (2)	C27—C28	1.496 (2)
С8—Н8	0.9300	C27—H27A	0.9700
C9—C10	1.388 (2)	С27—Н27В	0.9700
C11—C16	1.376 (2)	C28—C33	1.365 (3)
C11—C12	1.381 (2)	C28—C29	1.371 (3)
C12—C13	1.376 (3)	C29—C30	1.373 (3)
C12—H12	0.9300	С29—Н29	0.9300
C13—C14	1.364 (3)	C30—C31	1.361 (4)
С13—Н13	0.9300	С30—Н30	0.9300
C14—C15	1.362 (3)	C31—C32	1.367 (4)
C14—H14	0.9300	C31—H31	0.9300
C15—C16	1.373 (3)	C32—C33	1.378 (3)
C15—H15	0.9300	С32—Н32	0.9300
C16—H16	0.9300	С33—Н33	0.9300
O18—C19	1.415 (2)		
C2—O1—C10	119.99 (12)	O18—C19—H19A	110.1
C3—C2—O1	120.68 (15)	С20—С19—Н19А	110.1
C3—C2—C11	127.46 (16)	O18—C19—H19B	110.1
O1—C2—C11	111.85 (14)	С20—С19—Н19В	110.1
C2—C3—C4	123.57 (16)	H19A—C19—H19B	108.4
С2—С3—Н3	118.2	C21—C20—C25	118.81 (18)
С4—С3—Н3	118.2	C21—C20—C19	122.32 (17)
O17—C4—C3	121.05 (16)	C25—C20—C19	118.86 (19)
O17—C4—C9	124.67 (17)	C20—C21—C22	120.4 (2)
C3—C4—C9	114.27 (14)	C20-C21-H21	119.8
O18—C5—C6	123.46 (15)	C22—C21—H21	119.8
O18—C5—C9	115.42 (14)	C23—C22—C21	120.6 (2)
C6—C5—C9	121.11 (14)	C23—C22—H22	119.7
C5—C6—C7	119.92 (15)	C21—C22—H22	119.7
С5—С6—Н6	120.0	C22—C23—C24	119.6 (2)
С7—С6—Н6	120.0	C22—C23—H23	120.2
O26—C7—C8	124.22 (14)	C24—C23—H23	120.2
O26—C7—C6	114.59 (14)	C23—C24—C25	120.6 (2)
C8—C7—C6	121.18 (15)	C23—C24—H24	119.7
C7—C8—C10	117.46 (14)	C25—C24—H24	119.7
С7—С8—Н8	121.3	C20—C25—C24	120.0 (2)
С10—С8—Н8	121.3	C20—C25—H25	120.0
C10—C9—C5	115.96 (15)	C24—C25—H25	120.0
C10—C9—C4	119.12 (15)	C7—O26—C27	116.84 (13)
C5—C9—C4	124.91 (14)	O26—C27—C28	108.76 (14)

O1—C10—C8	113.76 (13)	O26—C27—H27A	109.9
O1—C10—C9	121.86 (14)	С28—С27—Н27А	109.9
C8—C10—C9	124.36 (15)	O26—C27—H27B	109.9
C16—C11—C12	117.70 (17)	С28—С27—Н27В	109.9
C16—C11—C2	120.75 (16)	H27A—C27—H27B	108.3
C12—C11—C2	121.55 (15)	C33—C28—C29	118.51 (19)
C13—C12—C11	120.97 (18)	C33—C28—C27	120.59 (19)
C13—C12—H12	119.5	C29—C28—C27	120.83 (19)
C11—C12—H12	119.5	C28—C29—C30	121.4 (2)
C14—C13—C12	120.5 (2)	С28—С29—Н29	119.3
C14—C13—H13	119.8	С30—С29—Н29	119.3
С12—С13—Н13	119.8	C31—C30—C29	119.4 (2)
C15—C14—C13	119.0 (2)	С31—С30—Н30	120.3
C15—C14—H14	120.5	С29—С30—Н30	120.3
C13—C14—H14	120.5	C30—C31—C32	120.1 (2)
C14—C15—C16	121.0 (2)	С30—С31—Н31	119.9
C14—C15—H15	119.5	С32—С31—Н31	119.9
С16—С15—Н15	119.5	C31—C32—C33	119.9 (3)
C15—C16—C11	120.8 (2)	С31—С32—Н32	120.0
С15—С16—Н16	119.6	С33—С32—Н32	120.0
С11—С16—Н16	119.6	C28—C33—C32	120.7 (2)
C5-018-C19	119.10(13)	С28—С33—Н33	119.7
018-C19-C20	107.99 (15)	C32—C33—H33	119.7
C10—O1—C2—C3	-5.7 (2)	C2—C11—C12—C13	-178.5 (2)
C10-O1-C2-C11	174.00 (14)	C11—C12—C13—C14	-0.4 (4)
O1—C2—C3—C4	0.4 (3)	C12—C13—C14—C15	-0.7 (4)
C11—C2—C3—C4	-179.18 (17)	C13-C14-C15-C16	1.1 (5)
C2—C3—C4—O17	-175.26 (19)	C14—C15—C16—C11	-0.4 (5)
C2—C3—C4—C9	5.6 (3)	C12-C11-C16-C15	-0.7 (4)
O18—C5—C6—C7	-178.38 (15)	C2-C11-C16-C15	178.9 (2)
C9—C5—C6—C7	0.2 (3)	C6—C5—O18—C19	6.3 (2)
C5—C6—C7—O26	179.15 (14)	C9—C5—O18—C19	-172.41 (14)
C5—C6—C7—C8	0.3 (3)	C5-018-C19-C20	171.97 (14)
O26—C7—C8—C10	-178.51 (15)	O18—C19—C20—C21	-3.9 (2)
C6—C7—C8—C10	0.2 (3)	O18—C19—C20—C25	174.59 (16)
O18—C5—C9—C10	177.49 (14)	C25—C20—C21—C22	0.4 (3)
C6—C5—C9—C10	-1.2 (2)	C19—C20—C21—C22	178.92 (18)
O18—C5—C9—C4	-1.2 (2)	C20—C21—C22—C23	0.0 (3)
C6—C5—C9—C4	-179.92 (16)	C21—C22—C23—C24	-0.3 (4)
O17—C4—C9—C10	174.32 (18)	C22—C23—C24—C25	0.2 (4)
C3—C4—C9—C10	-6.5 (2)	C21—C20—C25—C24	-0.5 (3)
O17—C4—C9—C5	-7.0 (3)	C19—C20—C25—C24	-179.12 (19)
C3—C4—C9—C5	172.14 (16)	C23—C24—C25—C20	0.3 (4)
C2-O1-C10-C8	-174.37 (14)	C8—C7—O26—C27	3.3 (3)
C2-O1-C10-C9	4.4 (2)	C6—C7—O26—C27	-175.52 (15)
C7—C8—C10—O1	177.45 (14)	C7—O26—C27—C28	-179.56 (15)
C7—C8—C10—C9	-1.3 (3)	O26—C27—C28—C33	-114.1 (2)
C5-C9-C10-O1	-176.87 (14)	O26—C27—C28—C29	69.2 (2)
C4—C9—C10—O1	1.9 (2)	C33—C28—C29—C30	0.1 (3)

1.0.(2)		17(05(10)
1.8 (2)	$C_2/-C_{28}-C_{29}-C_{30}$	1/6.85 (18)
-179.40 (16)	C28—C29—C30—C31	-0.7 (3)
-5.0 (3)	C29—C30—C31—C32	0.5 (4)
175.35 (18)	C30-C31-C32-C33	0.3 (5)
174.54 (19)	C29—C28—C33—C32	0.7 (4)
-5.1 (2)	C27—C28—C33—C32	-176.1 (2)
1.1 (3)	C31—C32—C33—C28	-0.9 (5)
	1.8 (2) -179.40 (16) -5.0 (3) 175.35 (18) 174.54 (19) -5.1 (2) 1.1 (3)	1.8 (2) C27—C28—C29—C30 -179.40 (16) C28—C29—C30—C31 -5.0 (3) C29—C30—C31—C32 175.35 (18) C30—C31—C32—C33 174.54 (19) C29—C28—C33—C32 -5.1 (2) C27—C28—C33—C32 1.1 (3) C31—C32—C33—C28

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
C12—H12…O1	0.93	2.37	2.701 (2)	101
C21—H21…O18	0.93	2.33	2.685 (2)	102
C16—H16…O17 ⁱ	0.93	2.57	3.212 (3)	127
C30—H30····Cg1 ⁱⁱ	0.93	3.12	3.838	135
C8—H8···Cg2 ⁱⁱⁱ	0.93	3.30	4.066	142
C27—H27B···Cg2 ⁱⁱⁱ	0.97	3.18	4.083	156

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) *x*, *y*, *z*+1; (iii) -*x*+2, -*y*+2, -*z*+1.

Fig. 1

